Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Sci Total Environ ; 926: 172045, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38554968

RESUMEN

Bioaccessibility of halogenated flame retardants (HFRs) and organophosphorus esters (OPEs) is necessarily investigated to provide more accurate risk assessment and information about absorption behavior of these pollutants. In this study, total and bioaccessible concentrations of HFRs (including legacy and alternative substances) and OPEs were determined in settled dust samples collected from Vietnamese e-waste and end-of-life vehicle (ELV) processing areas. Concentrations of both HFRs and OPEs were significantly higher in the e-waste dust than ELV dust. Bioavailability of HFRs and OPEs in dust was determined by using an in vitro assay with human-simulated digestive fluids, dialysis membrane, and Tenax® TA sorptive sink. Bioaccessibility of HFRs was markedly lower than that of OPEs, which could be largely due to higher hydrophobicity of HFRs compared to OPEs. Bioaccessibility of almost hydrophobic compounds were markedly lower in the e-waste dust (containing micronized plastic debris) than in the ELV dust (containing oily materials), suggesting the influence of specific dust matrices on pollutant bioaccessibility. Although the daily uptake doses of selected HFRs and OPEs from dust were markedly higher in the e-waste sites compared to the ELV sites, the direct exposure risk was not significant. Our results suggest that bioaccessibility can partly explain the differences between dust and uptake profiles, which may relate to accumulation profiles of HFRs and OPEs in human samples.


Asunto(s)
Contaminación del Aire Interior , Residuos Electrónicos , Contaminantes Ambientales , Retardadores de Llama , Humanos , Polvo/análisis , Monitoreo del Ambiente/métodos , Retardadores de Llama/análisis , Vietnam , Residuos Electrónicos/análisis , Contaminación del Aire Interior/análisis , Organofosfatos/análisis , Ésteres/análisis , China
2.
Sci Total Environ ; 920: 170759, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336065

RESUMEN

Aquatic animals and consumers of aquatic animals are exposed to increasingly complex mixtures of known and as-yet-unknown chemicals with dioxin-like toxicities in the water cycle. Effect- and cell-based bioanalysis can cover known and yet unknown dioxin and dioxin-like compounds as well as complex mixtures thereof but need to be standardized and integrated into international guidelines for environmental testing. In an international laboratory testing (ILT) following ISO/CD 24295 as standard procedure for rat cell-based DR CALUX un-spiked and spiked extracts of drinking-, surface-, and wastewater were validated to generate precision data for the development of the full ISO-standard. We found acceptable repeatability and reproducibility ranges below 36 % by DR CALUX bioassay for the tested un-spiked and spiked water of different origins. The presence of 17 PCDD/Fs and 12 dioxin-like PCBs was also confirmed by congener-specific GC-HRMS analysis. We compared the sum of dioxin-like activity levels measured by DR CALUX bioassay (expressed in 2,3,7,8-TCDD Bioanalytical Equivalents, BEQ; ISO 23196, 2022) with the obtained GC-HRMS chemical analysis results converted to toxic equivalents (TEQ; van den Berg et al., 2013).


Asunto(s)
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Ratas , Animales , Dibenzodioxinas Policloradas/análisis , Dioxinas/toxicidad , Dioxinas/análisis , Aguas Residuales , Reproducibilidad de los Resultados , Dibenzofuranos/análisis , Ríos , Luciferasas , Bifenilos Policlorados/análisis , Bioensayo/métodos , Dibenzofuranos Policlorados/análisis
3.
Chemosphere ; 349: 140920, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072198

RESUMEN

Environmental phenols are widely distributed in the environment and human samples, suggesting potential exposure to these chemicals. We designed an intervention trial with 30 participants over 6 days to assess the urinary concentrations and half-lives of environmental phenols in Japanese young people. The target environmental phenols include three parabens (methyl paraben, ethyl paraben, and propyl paraben), two benzophenones (benzophenone 1 and 3), two bisphenols (bisphenol F and bisphenol S), and triclosan. Throughout the intervention, the participants consumed the same food and drinks and used personal care products provided by the project. The target phenols were measured in urine from the participants using a liquid chromatography-tandem mass spectrometer. We compared the measured concentrations between the study periods to better understand the exposure tendency. Some statistically significant differences were observed. All target analytes were detected in more than 50% of samples collected on Day 0 (the day before the intervention). Methyl paraben was the dominant phenol detected in urine (1640 µg/g-creatinine), followed by ethyl paraben (119 µg/g-creatinine). Downward trends in creatinine-corrected concentrations were observed for all target analytes in some instances. Non-compartment analysis was performed to estimate urinary excretion parameters. The estimated half-lives ranged from 7.69 to 20.3 h. Use of paraben-free products during the intervention period reduced the body burden.


Asunto(s)
Triclosán , Humanos , Adulto Joven , Adolescente , Triclosán/análisis , Parabenos/análisis , Creatinina , Japón , Fenoles/análisis , Benzofenonas/análisis , Exposición a Riesgos Ambientales/análisis
4.
Ecotoxicol Environ Saf ; 264: 115424, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37672939

RESUMEN

The Atlantic salmon (Salmo salar) population in the Baltic Sea consists of wild and hatchery-reared fish that have been released into the sea to support salmon stocks. During feeding migration, salmon migrate to different parts of the Baltic Sea and are exposed to various biotic and abiotic stressors, such as organohalogen compounds (OHCs). The effects of salmon origin (wild or hatchery-reared), feeding area (Baltic Main Basin, Bothnian Sea, and Gulf of Finland), and OHC concentration on the differences in hepatic proteome of salmon were investigated. Multi-level analysis of the OHC concentration, transcriptome, proteome, and oxidative stress biomarkers measured from the same salmon individuals were performed to find the key variables (origin, feeding area, OHC concentrations, and oxidative stress) that best account for the differences in the transcriptome and proteome between the salmon groups. When comparing wild and hatchery-reared salmon, differences were found in xenobiotic and amino acid metabolism-related pathways. When comparing salmon from different feeding areas, the amino acid and carbohydrate metabolic pathways were notably different. Several proteins found in these pathways are correlated with the concentrations of polychlorinated biphenyls (PCBs). The multi-level analysis also revealed amino acid metabolic pathways in connection with PCBs and oxidative stress variables related to glutathione metabolism. Other pathways found in the multi-level analysis included genetic information processes related to ribosomes, signaling and cellular processes related to the cytoskeleton, and the immune system, which were connected mainly to the concentrations of Polychlorinated biphenyls and Dichlorodiphenyltrichloroethane and their metabolites. These results suggest that the hepatic proteome of salmon in the Baltic Sea, together with the transcriptome, is more affected by the OHC concentrations and oxidative stress of the feeding area than the origin of the salmon.


Asunto(s)
Bifenilos Policlorados , Salmo salar , Humanos , Animales , Salmo salar/genética , Proteoma , Estrés Oxidativo , Aminoácidos
5.
Sci Total Environ ; 866: 161258, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36587684

RESUMEN

In Asian developing countries, undeveloped and ineffective sewer systems are causing surface water pollution by a lot of contaminants, especially pharmaceuticals and personal care products (PPCPs). Therefore, the risks for freshwater fauna need to be assessed. The present study aimed at: i) elucidating the contamination status; ii) evaluating the bioaccumulation; and iii) assessing the potential risks of PPCP residues in surface water and freshwater fish from three Asian countries. We measured 43 PPCPs in the plasma of several fish species as well as ambient water samples collected from India (Chennai and Bengaluru), Indonesia (Jakarta and Tangerang), and Vietnam (Hanoi and Hoa Binh). In addition, the validity of the existing fish blood-water partitioning model based solely on the lipophilicity of chemicals is assessed for ionizable and readily metabolizable PPCPs. When comparing bioaccumulation factors calculated from the PPCP concentrations measured in the fish and water (BAFmeasured) with bioconcentration factors predicted from their pH-dependent octanol-water partition coefficient (BCFpredicted), close values (within an order of magnitude) were observed for 58-91 % of the detected compounds. Nevertheless, up to 110 times higher plasma BAFmeasured than the BCFpredicted were found for the antihistamine chlorpheniramine in tilapia but not in other fish species. The plasma BAFmeasured values of the compound were significantly different in the three fish species (tilapia > carp > catfish), possibly due to species-specific differences in toxicokinetics (e.g., plasma protein binding and hepatic metabolism). Results of potential risk evaluation based on the PPCP concentrations measured in the fish plasma suggested that chlorpheniramine, triclosan, haloperidol, triclocarban, diclofenac, and diphenhydramine can pose potential adverse effects on wild fish. Results of potential risk evaluation based on the PPCP concentrations measured in the surface water indicated high ecological risks of carbamazepine, sulfamethoxazole, erythromycin, and triclosan on Asian freshwater ecosystems.


Asunto(s)
Carpas , Cosméticos , Triclosán , Contaminantes Químicos del Agua , Animales , Bioacumulación , Agua , Clorfeniramina , Ecosistema , India , Cosméticos/análisis , Carpas/metabolismo , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
6.
Environ Sci Pollut Res Int ; 30(8): 20765-20774, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36255587

RESUMEN

Estrogen, androgen, and glucocorticoid receptors (ER, AR, and GR) agonist activities in river water samples from Chennai and Bangalore (India), Jakarta (Indonesia), and Hanoi (Vietnam) were evaluated using a panel of chemical-activated luciferase gene expression (CALUX) assays and were detected mainly in the dissolved phase. The ER agonist activity levels were 0.011-55 ng estradiol (E2)-equivalent/l, higher than the proposed effect-based trigger (EBT) value of 0.5 ng/l in most of the samples. The AR agonist activity levels were < 2.1-110 ng dihydrotestosterone (DHT)-equivalent/l, and all levels above the limit of quantification exceeded the EBT value of 3.4 ng/l. GR agonist activities were detected in only Bangalore and Hanoi samples at dexamethasone (Dex)-equivalent levels of < 16-150 ng/l and exceeded the EBT value of 100 ng/l in only two Bangalore samples. Major compounds contributing to the ER, AR, and GR agonist activities were identified for water samples from Bangalore and Hanoi, which had substantially higher activities in all assays, by using a combination of fractionation, CALUX measurement, and non-target and target chemical analysis. The results for pooled samples showed that the major ER agonists were the endogenous estrogens E2 and estriol, and the major GR agonists were the synthetic glucocorticoids Dex and clobetasol propionate. The only AR agonist identified in major androgenic water extract fractions was DHT, but several unidentified compounds with the same molecular formulae as endogenous androgens were also found.


Asunto(s)
Glucocorticoides , Contaminantes Químicos del Agua , Andrógenos/análisis , Bioensayo/métodos , Estrógenos/análisis , Estrona/análisis , Glucocorticoides/análisis , India , Ríos/química , Agua/análisis , Contaminantes Químicos del Agua/análisis , Indonesia , Vietnam
7.
Environ Geochem Health ; 45(6): 2705-2728, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36194303

RESUMEN

Electrical and electronic waste (e-waste) has become a global concern, especially in developing countries. In this review, we conducted a literature survey of e-waste management practices, processing activities, and adverse effects in Vietnam, an emerging country in Southeast Asia, by gathering data from peer-reviewed articles published between 2009 and 2021. This is the first review paper to comprehensively discuss management and research aspects regarding e-waste in an Asian developing country. Due to the lack of an effective management and recycling system, a certain portion of Vietnamese e-waste has been processed by informal sectors without appropriate recycling and pollution control technology, resulting in localized contamination and human exposure to toxic chemicals. Primitive processing activities, such as manual dismantling, open burning, and plastic recycling, have been identified as important contributors to the environmental emission and human exposure to toxic elements (notably As, Mn, Ni, Pb, Zn) and organic pollutants like flame retardants, PAHs, PCBs, and dioxin-related compounds. Informal e-waste processing from these small-scale workshops can release pollutants at similar levels compared to large-scale facilities in developed countries. This fact suggests an urgent need to develop management best practices for e-waste in Vietnam as well as other emerging and developing countries, in order to increase recycling efficiency and minimize their adverse impacts on environmental and human health.


Asunto(s)
Residuos Electrónicos , Contaminantes Ambientales , Bifenilos Policlorados , Humanos , Residuos Electrónicos/análisis , Vietnam , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/análisis , Bifenilos Policlorados/análisis , Reciclaje , Ambiente , Monitoreo del Ambiente
8.
Sci Total Environ ; 853: 158669, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36108870

RESUMEN

Measuring personal exposure to flame retardants (FRs) is crucial for assessing and controlling human health risks posed by FRs during the recycling of electronic waste (e-waste) and end-of-life vehicles (ELVs). Here, we examined the use of handwipes and silicone wristbands to measure personal FR exposure for e-waste and ELV recycling workers and their children in Vietnam. On the handwipes from the e-waste recycling workers, the predominant five FRs detected were TBBPA (median concentration: 3700 ng/wipe), BDE-209 (1700 ng/wipe), TPHP (500 ng/wipe), DBDPE (410 ng/wipe), and BPA-BDPP (360 ng/wipe). On the handwipes from ELV recycling workers, TPHP (60 ng/wipe), IPPDPP (47 ng/wipe), BIPPPP/DIPPDPP (33 ng/wipe), BDE-209 (26 ng/wipe), and TCIPP (23 ng/wipe) were detected as the five predominant FRs. On the wristbands from the e-waste recycling workers, the five predominant FRs detected were TBBPA (median concentration: 340 ng/g), BDE-209 (330 ng/g), DBDPE (65 ng/g), TPHP (50 ng/g), and TMPP (34 ng/g). On the wristbands from the ELV recycling workers, TPHP (34 ng/g), IPPDPP (18 ng/g), TCIPP (14 ng/g), TDMPP (13 ng/g), BIPPPP/DIPPDPP (9.3 ng/g) and TMPP (9.3 ng/g) were detected as the predominant FRs. The data obtained with the wristbands were comparable to those obtained with the handwipes. Similar FR profiles were found in between the workers and their children. The profiles indicate that the informal e-waste and ELV recycling caused FR exposure not only for workers but also for their children who live in the workshops. By using the handwipe and wristband sampling approaches, we determined types and concentrations of FRs to which the workers and their children were dominantly exposed. Silicone wristband- and handwipe-based assessment is expected to be effective means of measuring personal FR exposure for the informal e-waste and ELV recycling workers and their children.


Asunto(s)
Residuos Electrónicos , Retardadores de Llama , Niño , Humanos , Retardadores de Llama/análisis , Residuos Electrónicos/análisis , Siliconas , Vietnam , Monitoreo del Ambiente , Éteres Difenilos Halogenados/análisis , Reciclaje , Polvo/análisis , Organofosfatos/análisis
9.
Environ Pollut ; 310: 119809, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35931384

RESUMEN

Information about the co-occurrence of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) in the environment of informal waste processing areas is still limited, especially in emerging and developing countries. In this study, OPEs and HFRs including polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and chlorinated flame retardants (CFRs) were determined in settled dust from Vietnamese e-waste recycling (WR) and vehicle processing (VP) workshops. Pollutant concentrations decreased in the order: OPEs (median 1500; range 230-410,000 ng/g) ≈ PBDEs (1200; 58-250,000) > NBFRs (140; not detected - 250,000) > CFRs (13; 0.39-2200). HFR and OPE levels in the WR workshops for e-waste and obsolete plastic were significantly higher than in the VP workshops. Decabromodiphenyl ether and decabromodiphenyl ethane are major HFRs, accounting for 60 ± 26% and 25 ± 29% of total HFRs, respectively. Triphenyl phosphate, tris(2-chloroisopropyl) phosphate, and tris(1,3-dichloroisopropyl) phosphate dominated the OPE profiles, accounting for 30 ± 25%, 25 ± 16%, and 24 ± 18% of total OPEs, respectively. The OPE profiles differed between WR and VP dust samples, implying different usage patterns of these substances in polymer materials for electric/electronic appliance and automotive industries. Human health risk related to dust-bound HFRs and OPEs in the study areas was low.


Asunto(s)
Residuos Electrónicos , Retardadores de Llama , Humanos , Polvo , Monitoreo del Ambiente , Ésteres , Éteres Difenilos Halogenados , Organofosfatos , Medición de Riesgo , Vietnam
11.
Environ Monit Assess ; 194(6): 415, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35536368

RESUMEN

This study was conducted to find out characteristics of trace element levels and those impacts to organisms at a former uranium (U) mining site. Concentrations of trace elements (Li, Mg, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Cs, Ba, Pb, Bi, and U) were determined in sediments, water, and three organism types (insects, frogs, and newts) from three zones in the former U mining site, Ningyo-toge in Japan. Concentrations of As and U in the sediments and water samples were the highest at the mill tailings pond (MP) site, where post-U extraction remnants have been accumulated. Additionally, among the organisms analyzed the highest concentrations of these elements/isotopes were found in newts from MP. Considering data analyses of the whole-body element concentrations, bioaccumulation factors, and δ15N values for the organisms, it was concluded that newts might be the most vulnerable species in this location. Further monitoring and more accurate evaluation of the ecological impacts are preferred for this former U mining site.


Asunto(s)
Oligoelementos , Uranio , Ambiente , Monitoreo del Ambiente , Japón , Minería , Oligoelementos/análisis , Uranio/análisis , Agua/análisis
12.
Ecotoxicol Environ Saf ; 237: 113538, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483143

RESUMEN

Several naturally occurring dioxins, including 1,3,7-tribromodibenzo-p-dioxin (1,3,7-TriBDD), synthesized by red algae, have been detected in the marine environment. As 1,3,7-TriBDD is accumulated in mussels and fish, predators, such as marine birds, are exposed to this congener, similar to anthropogenic dioxins (including 2,3,7,8-tetrachlorodibenzo-p-dioxin TCDD). However, little is known about the impact of 1,3,7-TriBDD exposure on the bird health. To understand the effects of 1,3,7-TriBDD on birds, the phenotypic effects and hepatic transcriptome were investigated in chicken (Gallus gallus) embryos treated with 27 µM (2.9 ng/g egg) and 137 µM (14.4 ng/g egg) 1,3,7-TriBDD. The blood glucose levels in the 1,3,7-TriBDD-treated groups were lower than those in the control group. The transcriptome analysis of 6520 sequences in the 27 and 137 µM 1,3,7-TriBDD-treated groups identified 733 and 596 differentially expressed genes (DEGs). Cytochrome P450 1A4 and 1A5 were also identified as DEGs, suggesting that the aryl hydrocarbon receptor is activated by this congener. Pathway and network analyses with DEGs suggested that 1,3,7-TriBDD may induce carcinogenic effects and metabolic alterations. These results were similar to the effects on TCDD-treated embryos. Nevertheless, the overall transcriptome results suggested that compared with TCDD, 1,3,7-TriBDD has a unique impact on insulin- and peroxisome-signaling pathways in chicken embryos. Differences in altered transcriptome profiles between 1,3,7-TriBDD- and TCDD-treated embryos may lead to different phenotypic effects: less severe effects of 1,3,7-TriBDD and more fatal effects of TCDD. Collectively, these findings warrant the further assessment of the hazard and risk of 1,3,7-TriBDD on marine animals, considering increased exposure due to climate change.


Asunto(s)
Dioxinas , Dibenzodioxinas Policloradas , Animales , Embrión de Pollo , Pollos/metabolismo , Dioxinas/toxicidad , Dibenzodioxinas Policloradas/toxicidad , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transcriptoma
13.
Environ Pollut ; 303: 119114, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35276247

RESUMEN

Plastic pollution has become one of the most pressing environmental issues. Recycling is a potential means of reducing plastic pollution in the environment. However, plastic fragments are still likely released to the aquatic environment during mechanical recycling processes. Here, we examined the plastic inputs and effluent outputs of three mechanical recycling facilities in Vietnam dealing with electronic, bottle, and household plastic waste, and we found that large quantities of microplastics (plastics <5 mm in length) are generated and released to the aquatic environment during mechanical recycling without proper treatment. Comparisons with literature data for microplastics in wastewater treatment plant effluents and surface water indicated that mechanical recycling of plastic waste is likely a major point source of microplastics pollution. Although there is a mismatch between the size of the microplastics examined in the present study and the predicted no-effect concentration reported, it is still possible that microplastics generated at facilities pose risks to the aquatic environment because there might be many plastic particulates smaller than 315 µm, as suggested by our obtained size distributions. With mechanical recycling likely to increase as we move to a circular plastics economy, greater microplastics emissions can be expected. It is therefore an urgent need to fully understand not only the scale of microplastic generation and release from plastic mechanical recycling but also the environmental risk posed by microplastics in the aquatic environment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Monitoreo del Ambiente , Contaminación Ambiental , Microplásticos , Plásticos , Reciclaje , Aguas Residuales , Contaminantes Químicos del Agua/análisis
14.
Chemosphere ; 295: 133833, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35120952

RESUMEN

Reactive sulfur species (RSS), such as hydrogen per (poly)sulfide, cysteine per (poly)sulfide, glutathione per (poly)sulfide, and protein-bound per (poly)sulfides, can easily react with environmental electrophiles such as methylmercury (MeHg), because of their high nucleophilicity. These RSS are produced by enzymes such as cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE) and are found in mammalian organs. Organs of wildlife have not been analyzed for hydrogen sulfide, cysteine, glutathione, and RSS. In this study, low molecular weight nucleophilic sulfur substances, including RSS, were quantified by stable isotope dilution assay-based liquid chromatography-mass spectrometry using ß-(4-hydroxyphenyl)ethyl iodoacetamide to capture the target chemicals in the small Indian mongoose which species possesses high mercury content as same as some marine mammals. Western blotting revealed that the mongoose organs (liver, kidney, cerebrum, and cerebellum) contained proteins that cross-reacted with anti-CBS and CSE antibodies. The expression patterns of these enzymes were similar to those in mice, indicating that mongoose organs contain CBS and CSE. Moreover, bis-methylmercury sulfide (MeHg)2S, which is a low toxic compound in comparison to MeHg, was found in the liver of this species. These results suggest that the small Indian mongoose produces RSS and monothiols associated with detoxification of electrophilic organomercury. The animals which have high mercury content in their bodies may have function of mercury detoxification involved not only Se but also RSS interactions.


Asunto(s)
Herpestidae , Sulfuro de Hidrógeno , Animales , Cistationina gamma-Liasa/metabolismo , Herpestidae/metabolismo , Japón , Ratones , Azufre
15.
J Chromatogr A ; 1661: 462686, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34861578

RESUMEN

Thyroid hormones (THs) play a critical role in the regulation of biological processes, such as growth, metabolism, and development, in various animal species. Prohormone L-thyroxine (T4) is secreted from the thyroid gland and carried to peripheral tissues. T4 is then biotransformed to several metabolites which play different roles, mainly by iodothyronine deiodinases. Determination of deiodinated TH metabolites in key organs such as liver and brain would help to understand tissue-specific TH metabolism and homeostasis. In this study, we thus developed a highly sensitive method for the determination of six THs [T4, 3,5,3'-triodo-L-thyronine (T3), 3,3',5'-triiodo-L-thyronine (rT3), 3,5-diiodo-l-thyronine (3,5-T2), 3,3'-diiodo-l-thyronine (3,3'-T2), and 3-iodo-l-thyronine (3-T1)] in the brain and liver by using stored dog samples. The analytical method consisted of ultrasonic-assisted extraction in acetone acidified with formic acid, cleanup with a EVOLUTE® EXPRESS CX cartridge (reversed-phase combined with strong cation-exchange cartridge), and quantification with liquid chromatography-tandem mass spectrometry. Acceptable accuracy (internal standard-corrected recovery: 80%-120%) and intra- and inter-day precision (coefficient of variation: <6% and <15%, respectively) (n = 3/ batch, three days) were obtained for both brain and liver samples. In addition, low method detection limits were achieved for both brain (0.013-0.12 ng g-1) and liver (0.030-0.78 ng g-1), which resulted in the quantitation of not only T4, T3, and rT3, but also 3,3'-T2 in both dog brain and liver samples. The developed method was successfully applied to the analysis of THs in the brain and liver of dogs (Canis lupus familiaris) which were exposed to polychlorinated biphenyls (PCBs). As a result, concentration ratios of rT3/T4 and 3,3'-T2/T3 in the PCB-exposed dogs were significantly higher than those in the control groups, suggesting the enhanced inner (tyrosyl)-ring deiodination (5-deiodination) by PCB exposure. The analytical method developed in the present study enables comprehensive evaluation of alterations in peripheral TH metabolism which are caused by exposure to environmental pollutants.


Asunto(s)
Espectrometría de Masas en Tándem , Hormonas Tiroideas , Animales , Encéfalo , Cromatografía Liquida , Perros , Hígado , Tiroxina , Triyodotironina
16.
Sci Total Environ ; 806(Pt 4): 150912, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34666090

RESUMEN

The ubiquitous distribution of microplastics (MP) is a serious environmental issue in Asian countries. In this study, 54 open-dumping site soils collected from Cambodia, India, Indonesia, Laos, the Philippines, and Vietnam were analyzed for MP. Soil samples were also divided into light (floating) and heavy (sedimentation) fractions by density separation and analyzed for plastic additives. The highest abundance of MP was found in a soil from Cambodia at 218,182 pieces/kg. The median of MP in soils ranged from 1411 pieces/kg in India to 24,000 pieces/kg in the Philippines, suggesting that dumping sites are a major source of MP into the environment. Polyethylene, polypropylene, and polyethylene terephthalate were dominant polymers in soil samples analyzed. This indicates that daily-used plastic products are main sources of MP in dumping site soils in Asian countries. The high concentrations and burdens of phthalates and an antioxidant were detected in floating fraction accounting for 40 to 60% of the total additives in soils. Previous studies on soil pollution have assumed that the organic hydrophobic chemicals analyzed are adsorbed on the surface of soil particles. However, this result indicates that approximately half of the additives in dumping site soils were derived from MP, not soil particle. Monitoring study on soil pollution should be considered the occurrence of MP in the matrices.


Asunto(s)
Microplásticos , Contaminantes del Suelo , Monitoreo del Ambiente , Plásticos , Suelo , Contaminantes del Suelo/análisis
17.
Environ Toxicol Chem ; 41(2): 298-311, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34529856

RESUMEN

The presence of pharmaceutically active compounds (PACs) in the environment and their associated hazards is a major global health concern; however, data on these compounds are scarce in developing nations. In the present study, the existence of 39 non-antimicrobial PACs and six of their metabolites in wastewater from hospitals and adjacent surface waters in Sri Lanka was investigated from 2016 to 2018. The highest amounts of the measured chemicals, including the highest concentrations of atorvastatin (14,620 ng/L) and two metabolites, mefenamic acid (12,120 ng/L) and o-desmethyl tramadol (8700 ng/L), were detected in wastewater from the largest facility. Mefenamic acid, gemfibrozil, losartan, cetirizine, carbamazepine, and phenytoin were detected in all the samples. The removal rates in wastewater treatment were 100% for zolpidem, norsertaline, quetiapine, chlorpromazine, and alprazolam. There was substantial variation in removal rates of PACs among facilities, and the overall data suggest that treatment processes in facilities were ineffective and that some PAC concentrations in the effluents were increased. The estimated risk quotients revealed that 14 PACs detected in water samples could pose low to high ecological risk to various aquatic organisms. Compounds such as ibuprofen, tramadol, and chlorpromazine detected in untreated and treated wastewater at these facilities pose a high risk to several aquatic organisms. Our study provides novel monitoring data for non-antimicrobial PAC abundance and the associated potential ecological risk related to hospitals and urban surface waters in Sri Lanka and further offers valuable information on pre-COVID-19 era PAC distribution in the country. Environ Toxicol Chem 2022;41:298-311. © 2021 SETAC.


Asunto(s)
COVID-19 , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Hospitales , Humanos , SARS-CoV-2 , Sri Lanka , Aguas Residuales , Contaminantes Químicos del Agua/análisis
18.
J Chromatogr A ; 1657: 462571, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34614469

RESUMEN

The development of highly selective and sensitive analytical methods for the nontarget screening of persistent organic pollutants such as halogenated compounds in environmental samples is a challenging task. Soft ionization mass spectrometry has emerged as a powerful technique for obtaining essential molecular information, and it is expected to reveal compounds that remain hidden with conventional fragmentation techniques such as electron ionization (EI). In this study, a soft ionization method based on electron capture negative ionization using an inert gas was developed for the nontarget screening of chlorinated aromatics in environmental samples and was applied to comprehensive two-dimensional gas chromatography-high-resolution time-of-flight mass spectrometry (GC × GC-HRToFMS). In particular, argon (Ar) and helium (He) were evaluated as inert moderating gases, and were compared against the conventional methane (CH4). The optimal ionization conditions, including the flow rate and ion source temperature, were investigated based on the molecular ion intensities of highly chlorinated aromatics decachlorobiphenyl and octachlorodibenzofuran. Ar-mediated soft ionization provided the best sensitivity to molecular ions among the three gases at a low flow rate (0.1 mL min-1) and low ion source temperature, and more selective detection of molecular ions (i.e., less fragmentation) was obtained with the inert gases than with CH4. This method is also applicable to other chlorinated aromatics such as tetra- to nonachlorobiphenyls, tetra- to heptachlorinated dibenzofurans, pentachlorobenzene, and hexachlorobenzene. To demonstrate the applicability of the proposed method to a wide range of chlorinated aromatics in environmental samples, both Ar-mediated soft ionization and conventional EI were applied to GC × GC-HRToFMS for analysis of a crude extract of house dust. Soft ionization enabled the selective and sensitive detection of molecular ions for minor amounts of chlorinated aromatics, even in complex matrices. Furthermore, the extracted ion chromatograms of halide anions (Cl- or Br-) were useful for screening other chlorinated or brominated compounds in the environmental samples. The results suggest that combining information on halide anions obtained by soft ionization and the structural information provided by EI would constitute a powerful approach for the comprehensive identification of chlorinated aromatics.


Asunto(s)
Polvo , Gases Nobles , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas
20.
Environ Sci Technol ; 55(13): 8691-8699, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34100289

RESUMEN

Nontarget screening studies have recently revealed the accumulation of typically unmonitored organohalogen compounds (OHCs) in various marine animals, but information for terrestrial food chains is still lacking. This study investigated the accumulation profiles of known and unknown OHCs in the liver of representative wild bird specimens from Osaka, Japan using nontarget analysis based on two-dimensional gas chromatography-time-of-flight mass spectrometry. A large number of unmonitored OHCs were identified, including anthropogenic contaminants and marine halogenated natural products (HNPs), and their accumulation profiles were considered to be influenced by terrestrial and brackish water-based diets. Anthropogenic OHCs were highly accumulated in terrestrial predator species (peregrine falcon, hawks, and black kite), and some unmonitored highly chlorinated contaminants reached the levels of microgram per gram lipid in the liver, i.e., C10-/C15-based chlordane related compounds (CHLs) and their epoxides, dichlorodiphenyldichloroethylene (DDE) homologues, and polychlorinated terphenyls (PCTs). In contrast, HNPs were accumulated at higher levels in piscivorous birds (gray heron and common cormorant). Considering the enrichment of the unmonitored C10-/C15-based CHLs, PCTs, and DDE homologues relative to structurally similar persistent organic pollutants (POPs) in high trophic-level species such as raptors, further studies are needed to elucidate their environmental levels, behavior in terrestrial food chains, and ecotoxicological impacts.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Clorados , Bifenilos Policlorados , Rapaces , Animales , Aves , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Japón , Hígado/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...